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a b s t r a c t

Reconstruction of 3D scenes with abundant straight line features has many applications in computer
vision and robot navigation. Most approaches to this problem involve stereo techniques, in which a solu-
tion to the correspondence problem between at least two different images is required. In contrast, 3D
reconstruction of straight horizontal lines from a single 2D omni-directional image is studied in this
paper. The authors show that, for symmetric non-central catadioptric systems, a 3D horizontal line can
be estimated using only two points extracted from a single image of the line. One of the two points is
the symmetry point of the image curve of horizontal line, and the other is a generic point on the image
curve. This paper improves on several prior works, including horizontal line detection in omni-directional
image and line reconstruction from four viewing rays, but is simpler than those methods while being
more robust. We evaluate how the precision of feature point extraction can affect line reconstruction
accuracy, and discuss preliminary experimental results.

� 2010 Elsevier B.V. All rights reserved.

1. Introduction

The reconstruction of 3D scenes with abundant straight line fea-
tures such as outdoor street blocks and indoor structural features
has wide applications in computer vision and robot navigation. Sig-
nificant effort has been devoted to the development of two-view or
multi-view approaches allowing for high accuracy and complete
modeling of the scenes (Hirschmuller, 2008; Leung et al., 2008;
Kolmogorov, 2004; Klaus et al., 2006), based on solving the corre-
spondence problem between two or more images. In contrast to
these traditional approaches, this paper studies 3D reconstruction
of straight lines from only a single 2D image, which is acquired by a
symmetric non-central catadioptric camera. The correspondence
problem between different images can therefore be avoided.

In general, reconstruction from a single image is a challenging
and ill-posed problem. When using a perspective camera, the im-
age of an arbitrary straight line has infinite interpretations. In fact,
any straight line appearing on the viewing surface (the union set of
the viewing rays associated to the line image) could have produced
the line image (Caglioti et al., 2007b). In this paper, we utilize a
non-central catadioptric camera (Geyer and Daniilidis, 2001), in-
stead of classical central catadioptric cameras like those derived

by Baker and Nayar (1999), to capture an omni-directional image.
A non-central catadioptric system is a more general class of cam-
eras whose viewing rays are not all concurrent, and thus can be
exploited as a multi-viewpoint system to make reconstruction
from a single image possible.

Several innovative approaches to analyzing straight lines in
panoramic images have been proposed. A classical method in
(Teller and Hohmeyer, 1999) employs four given viewing rays to
compute lines which intersect the viewing rays in 3D space. Sturm
(2000), Hassner and Basri (2006) present an approach to recon-
struct objects from a single panoramic image, by utilizing con-
straints such as user-provided co-planarity, perpendicularity and
parallelism. Caglioti and Gasparini (2005) study the conditions un-
der which straight lines in 3D space can be reconstructed from sin-
gle images taken by a non-central symmetric catadioptric camera.
Furthermore, Caglioti et al. (2007a) relaxed the symmetry con-
straint, and derived geometric constraints for line localization with
off-axis catadioptric cameras based on a conic mirror. With a
spherical catadioptric system, Lanman et al. (2006) proposed a
more general approach for line reconstruction from four image
points, based on computing the Singular Value Decomposition
(SVD) of the Plücker coordinates matrix of four corresponding
viewing rays. Pinciroli et al. (2005) proposed an algorithm that is
robust to noise and is able to retrieve 3D information of horizontal
lines from a single omni-directional image, by adopting the ‘‘four
viewing ray reconstruction’’ algorithm and RANSAC technique.
Fiala and Basu (2002, 2005) used a modified Hough transform to
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detect horizontal lines in panoramic non-SVP images and track
them as landmarks for robot navigation.

Our work is an extension to these prior techniques, mainly close
to (Pinciroli et al., 2005; Fiala and Basu, 2002, 2005), which also fo-
cused on the problem of horizontal line reconstruction and detec-
tion, from a single omni-directional image. However, our novelty
lies in that the equation of a 3D horizontal line can be estimated
using only two points (one of them is the symmetry point of the
image curve of horizontal line) extracted from a single image, rather
than four points that is required in (Teller and Hohmeyer, 1999;
Caglioti and Gasparini, 2005; Pinciroli et al., 2005; Swaminathan
et al., 2008). We also evaluate how precision of the extracted
feature points can affect line reconstruction accuracy. Preliminary
experiments show that the proposed method is simpler than other
approaches, while being more robust.

The remainder of this paper is organized as follows: Section 2
gives some background on horizontal line reconstruction from
panoramic images. Specifics of the reconstruction using only two
points are discussed in Section 3. Experimental results are pre-
sented in Section 4, following which concluding remarks are given
in Section 5.

2. Horizontal line reconstruction

Straight lines often constitute the majority of structural features
in urban scenes. An example is shown in Fig. 1, where Fig. 1a is an
omni-directional image captured with a catadioptric camera in a
housing complex, and Fig. 1b is the corresponding unwrapped pan-
orama in which edges of buildings and enclosures, even grid-lines
on the ground, generate features corresponding to horizontal (par-
allel to the ground plane) lines. Although it is hard to ensure theo-
retical horizontality of these lines for most scenes, it is rational to
make this ‘‘horizontal’’ assumption since horizontality is a basic
principle of architecture, especially for urban and indoor environ-
ments. A similar assumption is also implicitly made in (Pinciroli
et al., 2005; Fiala and Basu, 2002, 2005).

The image sensor used in this paper is a non-central parabolic
catadioptric camera, as illustrated in Fig. 2. The sensor is placed
perpendicular to the ground with an assistant gradienter (an
equipment that can be used to measure the gradient and horizon-
tality), to make the image plane of a camera parallel to the ground.
In this section, we review the imaging formation of a catadioptric
system for analyzing the property of horizontal line images.
Fig. 3 shows the XZ section of the imaging model.

In Fig. 3, O denotes the origin of the coordinate system,
P1 = (x1, z1) is a point in space, m1 = (xm1, zm1) and p1 = (�R1, 0) are
the incidence point and image point of P1 respectively, f is the cam-
era focal length, and the equation of the mirror section is z = kx2.
Following the laws of reflection, we have:

tan a1 ¼ 2kxm1; tan b1 ¼
f

R1
; tan h1 ¼

z1 � zm1

x1 � xm1
;

and

b1 ¼ h1 þu1 þ c1

a1 ¼ h1 þu1

h1 þu1 þ /1 ¼ 90�

x1 þ c1 ¼ 90�

h1 þu1 ¼ x1

8>>>>>><
>>>>>>:

)
b1 ¼ h1 þu1 þ c1

a1 ¼ h1 þu1

u1 ¼ c1

8><
>: ) h1 ¼ 2a1 � b1

ð1Þ

Similarly, suppose P2 = (x2, z2) is another 3D point and z1 = z2,
m2 = (xm2, ym2) is the incidence point of P2, p2 = (�R2, 0) is the corre-
sponding image point of P2, as illustrated in Fig. 4. Given R2 < R1, we
have:

Fig. 1. Omni-directional image of an outdoor scene: (a) an omni-directional image of a housing complex; and (b) the corresponding unwrapped panoramic image.

Fig. 2. Non-central parabolic catadioptric camera.

Fig. 3. XZ section of the imaging model.
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h2 ¼ 2a2�b2

b1 < b2

xm1 > xm2

ym1 > ym2

a1 > a2

8>>>>>><
>>>>>>:

)
h1 > h2

xm1 > xm2

ym1 > ym2

8><
>: ; with z1 ¼ z2)

x1 < x2; ðh1 > 0;h2 > 0Þ
x1 > x2; ðh1 < 0;h2 < 0Þ

�

ð2Þ

Eq. (2) indicates that, for 3D points with the same Z coordinates
and satisfying h > 0, the farther the point is away from the axis of
image sensor (Z axis), the closer is its image point to the image cen-
ter. That is, for pixels corresponding to a 3D horizontal line, the dis-
tance between a pixel and the image center decreases depending
on the distance of the corresponding 3D point from the camera
axis. Similarly, when h < 0, an inverse conclusion can be deduced,
i.e., the distance between a pixel and the image center increases
depending on the distance of the corresponding 3D point to the
camera axis. While h = 0 is a degenerate case that has been dis-
cussed in (Caglioti and Gasparini, 2005). Especially, if two pixels
have the same distances to the image center, they must be sym-
metric to the radial line that contains the image of the 3D point
which has the shortest distance to the camera axis. This property
of horizontal line images can be used to simplify the detection of
horizontal lines from a single omni-directional image, e.g., to ex-
clude image curves that do not satisfy this property, since they
do not necessarily correspond to 3D horizontal lines. For example,
assume L is a non-horizontal line, ‘ is the image curve of L, O is the
image center, pm is the image of the specific point that has the
shortest distance to the camera axis, and pi and pj are two different
pixels on ‘, then, if pi and pj are symmetric to pmO

!
, we have

j piO
!
j–j pjO

!
j; on the other hand, if j piO

!
j ¼ j pjO

!
j, the pixels pi and

pj cannot be symmetric to pmO
!

.
Given the above relationship between points on 3D horizontal

lines and their images, how does the entire image of a horizontal
line look like? As discussed in (Fiala and Basu, 2002, 2005), for a
general non-SVP catadioptric system, a 3D horizontal line projects
to a complex non-circular curve which can be defined by qmain

and Rmain, and projections of all points on the line are then
represented by Ri and qmain + dq, as illustrated in Fig. 5, where
pmain = (Rmain, qmain), pi = (Ri, qi) = (Ri, qmain + dq) are pixels in polar
coordinates, and pmain is the image of the point on the horizontal
line that is closest to the camera axis. For the completeness and
clarity of following discussion, here we give a formal definition
of pmain as:

Definition 1. With a non-SVP omni-directional catadioptric camera,
assume O is the image center, ‘ is the image curve of a horizontal
line L, then the main-point pmain of ‘ is the point that satisfies:

For 8pi;qj 2 ‘;ðpi and qj are symmetric to pmO
!
Þ () ðjpiO

!
j ¼ jpjO

!
jÞ

Given the image curve ‘, it is easy to extract pmain according to
Definition 1, since we can compute the distances of j piO

!
j for all

pi 2 ‘ clockwise and then find the distance inflexion point as the
pmain.

In the following discussion, we focus on the problem of line
reconstruction and we assume that the image curves of horizontal
lines have been extracted, and all image points are in the form
(R, q). (Please refer to the literature on horizontal line detection
from a single omni-directional image for details (Fiala and Basu,
2002, 2005.)

3. Horizontal line reconstruction from two points

In this section, we first review the analytic mapping from image
points to 3D rays for a parabolic catadioptric system, and then pro-
pose our reconstruction algorithm.

3.1. 3D ray from an image point

To get the 3D ray from an image point, we consider the ray trav-
eling in the opposite direction, from image plane through the pin-
hole to 3D space after being reflected off a parabolic mirror, as
illustrated in Fig. 6.

Here O denotes the origin of the coordinate system, pi = (Ri, qi) is
a point on the image curve of a horizontal line, mi = (xmi, ymi, zmi) is
the incidence point, O0F = L is the distance between pinhole F and
the vertex O0, FO = f is the focal length of the camera, and the mirror
equation is z = k(x2 + y2) + f + L. Note that mi can be solved by com-
puting the intersection point of pimi

*
and the parabolic mirror.

zmi ¼ kðx2
mi þ y2

miÞ þ f þ L
x�xmi

Ri cosðqiÞ�xmi
¼ y�ymi

Ri sinðqiÞ�zmi
¼ z�zmi

zmi

(
ð3Þ

While ui, as the unit vector of the corresponding reflected ray of
pi, can also be determined based on Eq. (1) to obtain:

ui ¼ ðcosðqiÞ cosðhiÞ; sinðqiÞ cosðhiÞ; sinðhiÞÞ ð4Þ

Where

hi ¼ 2ai � bi

tan ai ¼ 2k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðx2

mi þ y2
miÞ

q
tan bi ¼ f=Ri

8>><
>>:
Thus, a 3D reflected ray ti, corresponding to pi, can be written as:

Fig. 4. Image of points with different distances to the camera axis. Fig. 5. Image of a horizontal line.
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ti ¼ mi þ kui ð5Þ

3.2. Determining a horizontal line from two rays

In a non-SVP parabolic catadioptric camera, not all reflected
rays intersect the axis at the same point as shown in Fig. 6. In fact,
for two image points that are not congruent modulo a rotation
around the optical axis, their corresponding reflected rays are
twisted, i.e., the two rays are not coplanar. This property makes
reconstruction of a 3D line from a single image possible.

All present algorithms in this field require four viewing rays, i.e.,
four corresponding points on the image curve of a horizontal line,
to reconstruct the line by computing lines intersecting the four gi-
ven viewing rays. This is because in general, there are an infinite
number of lines intersecting three or less lines in 3D space, exactly
two lines intersecting four given lines, and none intersecting more
than four lines (Teller and Hohmeyer, 1999). However, we found
that for image curves of a horizontal line defined by qmain and Rmain

(Fiala and Basu, 2002, 2005), it is possible to reconstruct the line
from only two points on the curve: one is pmain = (Rmain, qmain),
and the other is an arbitrary point pi = (Ri, qi), 0 < |qi � qmain| < 90�,
as shown in Fig. 6. From these two viewing rays corresponding to
the two given points, exactly one horizontal line can be deter-
mined. In fact, we can prove the following theorem:

Theorem 1. With a calibrated non-SVP omni-directional catadioptric
camera, given two image points pmain = (Rmain, qmain) and pi = (Ri, qi),
0 < |qi � qmain| < 90� of a horizontal line L, L can be uniquely
determined.

Proof. Since the imaging sensor is calibrated, and pmain, pi are
given, according to Section 3.1 and Fig. 6, the viewing rays tm

and ti corresponding to pmain and pi can be estimated. Therefore,
there are four independent constraints on L:

(1) L\tm: tm is the corresponding viewing ray of pmain, and pmain

is the image of the closest point on L to the camera axis,
hence L is perpendicular to the plane formed by tm and the
camera axis. Consequently, L\tm.

(2) L intersects tm: tm is the corresponding viewing ray of pmain,
and pmain is the image of a point on L, thus L must intersect tm

at some point.
(3) L intersects ti: ti is the corresponding viewing ray of pi, and pi

is the image of a point on L, thus L must intersect ti at some
point.

(4) L is horizontal: this is the premise of the algorithm.

The above constraints are enough to uniquely determine the
equation of L. h

We solve for L by exploiting Plücker coordinates, since it pro-
vides a convenient representation for directed lines in 3D space.
If a and b are two directed lines, and Pa, Pb their corresponding
Plücker coordinates, a relation side(a, b) can be defined as the per-
muted inner product:

sideða; bÞ ¼ Pa �Pb ð6Þ

which is zero whenever a and b intersect or are parallel, and non-
zero otherwise (Teller and Hohmeyer, 1999).

To reconstruct the horizontal line L from tm and ti, we define L
by setting its Z coordinates as zL. Since L\tm and L intersects tm, L
can be represented as a function of one parameter zL. According
to Eq. (6), we then have sideðti; LÞ ¼ Pti

�PL ¼ 0 because L inter-
sects ti, from which zL can be determined. Consequently, the hori-
zontal line L can be determined.

Although the proposed algorithm is very simple, being an
improvement on prior research, it makes full use of the character-
istics of a horizontal line image, and exploits a different way to
reconstruct horizontal lines from a single omni-directional image.

Additionally, notice that, the line reconstruction algorithm in
this section is only determined by the two viewing rays corre-
sponding to the two extracted image points, and has no direct link
to the shape of the reflective mirror. Therefore, the proposed meth-
od can be suitable for any omni-directional catadioptric imaging
sensor, given that it is symmetric around the camera axis, and
the mirror is convex.

4. Experimental results

As discussed above, 3D horizontal lines can be reconstructed
from either four viewing rays (Teller and Hohmeyer, 1999; Lanman
et al., 2006; Pinciroli et al., 2005), or two viewing rays as proposed
in this paper. Since these rays are all derived from image points of a
horizontal line, the accuracy of reconstruction naturally depends
on the accuracy of image point extraction and camera calibration.
Lanman et al. (2006) evaluated the calibration accuracy necessary
for reconstruction from a single image, and studied the effect of
calibration errors on reconstruction. In this section, we focus on
the sensitivity of our algorithm to extraction precision of image
points, via simulation, and compare it with the classical recon-
struction algorithm which utilizes four viewing rays (Lanman
et al., 2006).

4.1. Reconstruction under different extraction precisions

Theoretically, if the coordinates of extracted image points are
sufficiently precise, reconstruction from either four viewing rays
or two viewing rays can both obtain good results. This is so because
computing lines in 3D space that intersect given viewing rays is
purely a mathematical problem, and has nothing to do with other
factors. Our simulation shows that, when image points have a pre-
cision of 10�6 cm, the two approaches are almost comparable, and
both have error rates of about 0.1%. However, precision of 10�6 cm
is hard to achieve in practical situations, and the common precision
of image point extraction varies between 10�3 cm and 10�4 cm,
depending on the size of captured image and the resolution of a
camera’s CCD.

To evaluate the sensitivity of horizontal line reconstruction to
extraction precision of image points, we use an ideal catadioptric
camera model, which has the same camera parameters as our real
imaging sensor shown in Fig. 2, to simulate the imaging procedure

Fig. 6. Horizontal line from two viewing rays reflected off a parabolic mirror.
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of a 3D horizontal line. At the same time, random perturbations to
image point coordinates are introduced, to make them accurate at
different precision levels between 10�3 cm and 10�4 cm. After an
omni-directional image is captured, four points and two points
(one being pmain = (Rmain, qmain)) are randomly picked from the
image curve of a horizontal line to execute the reconstruction pro-
cedures 200 times. Since reconstructed lines are supposed to be
horizontal and perpendicular to tm (the viewing ray corresponding
to pmain, as shown in Fig. 6), we can use the distances of lines from
the camera axis as the criteria to measure the reconstruction
results. Fig. 7 shows the results of both the proposed method and
the classical ‘‘four viewing rays reconstruction’’ algorithm, where
the distance of a 3D line from the camera axis is set to 300 cm
(as labeled in red), and the height is set to 200 cm.

Fig. 7 indicates that, the more precise the image point coordi-
nates is, the more precisely the 3D line can be reconstructed. Under
extraction precisions of 10�3 cm and 10�4 cm, the average error
rates of ‘‘four viewing rays reconstruction’’ algorithm are about
5% and 2% respectively, while the corresponding error rates of
the proposed method are about 3% and 1%. This shows that our
approach is about twice as accurate as the previous method.

4.2. Reconstructing lines at different distances

To evaluate the sensitivity of reconstruction algorithms to
variations in depth, we construct 3D horizontal lines at different
distances from the camera axis, assuming the same precision in
feature point extraction. In this experiment, the heights of 3D lines
are all set to 200 cm, and the distances are set between 250 cm and
500 cm. We reconstruct lines with four and two randomly picked
image points respectively, repeat the process 200 times (as in
Section 4.1), and compute the mean values as the final results.

As illustrated in Fig. 8, for lines at different distances, recon-
struction with the proposed method is more precise than that from
four image points, under extraction precisions of both 10�3 cm and
10�4 cm. In Table 1, we give some specific comparisons between
these two methods at some selected distances. Distance error rates
of the reconstructed lines under extraction precision of 10�4 cm
are shown in Fig. 9, and their corresponding orientation errors
are illustrated in Fig. 10. Since in this experiment, we pick image
points randomly (except the main point), the results obtained in
Figs. 9 and 10 look somewhat fluctuating. However, one can clearly
see that the distance error rate generally increases depending on

Fig. 7. Reconstructing horizontal lines under different extraction precisions (red horizontal line: ground truth; blue scattered points: reconstruction result). (a, c)
reconstruction from four points; (b, d) reconstruction using the proposed method. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
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the distance of the line to the camera axis, while the orientation er-
ror, which mainly depends on the accuracy of the estimation of the
main point, is less correlated with the line distance.

Figs. 8a and 9 also show that, under the extraction precision of
10�3 cm, acceptable reconstruction, with an average error rate of
less than 5%, is possible only for lines within a distance of
450 cm. To correctly reconstruct lines beyond this distance, one
effective way is to improve the accuracy of feature point extrac-
tion. However, this is difficult to achieve with algorithm improve-
ment because it depends mainly on the image sensor precision.

4.3. Reconstruction from real omni-directional images

In this section, examples of reconstruction from real omni-
directional images are presented. A two stage calibration proce-
dure is used to obtain precise intrinsic and extrinsic camera
parameters: (1) intrinsic calibration of the camera, (2) estimation
of mirror pose with respect to the camera, as in (Tomohiro et al.,
2006). The test images are shown in Fig. 11(a, b), which are cap-
tured with a non-central catadioptric camera (Fig. 2). Two image

Fig. 8. Reconstructing 3D lines at different distances (red line: ground truth, black curve: reconstruction from four points; blue curve: reconstruction from two points). (a)
Reconstruction under extraction precision of 10�3 cm; (b) reconstruction under extraction precision of 10�4 cm. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

Table 1
Comparing reconstruction at specific distances (errors in parenthesis).

Distance of lines Reconstructed distance

Reconstruct from four
points

Reconstruct with proposed
method

10�3 cm 10�4 cm 10�3 cm 10�4 cm

250 247.8 (2.2) 248.9 (1.1) 252.3 (2.3) 249.8 (0.2)
300 294.5 (5.5) 298.6 (1.4) 297.2 (2.8) 300.7 (0.7)
350 341.3 (8.7) 346.2 (3.8) 343.1 (6.9) 353.4 (3.4)
400 376.6 (23.4) 391.5 (8.5) 381.8 (18.2) 395.3 (4.7)
450 414.7 (35.3) 436.9 (13.1) 434.2 (15.8) 443.8 (6.2)

Fig. 9. Error rate of estimated distance.

W. Chen et al. / Pattern Recognition Letters 32 (2011) 524–531 529
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Fig. 10. Estimated orientation error.

Fig. 11. Line reconstruction from real omni-directional images: (a, b) omni-directional images captured in a lab and a meeting room; (c, d) line reconstructions from (a) and
(b) respectively with different methods (four image points and two image points).

530 W. Chen et al. / Pattern Recognition Letters 32 (2011) 524–531
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curves corresponding to horizontal lines in omni-directional
images are correctly detected using the method proposed in (Fiala
and Basu, 2002). A sub-pixel corner detection algorithm (Bouguet,
2010) is used to refine the manually-selected image points. Follow-
ing the method outlined in Sections 3, we estimate the equations of
3D horizontal lines, as illustrated in Fig. 11(c, d). Since ground truth
is not available, we compare our reconstruction (shown in solid
red) to that obtained using four viewing rays (shown in dotted
blue). Notice that the line reconstructed with the proposed method
is closer to horizontal, which supports the error observations made
from simulations in Section 4.1.

5. Conclusion

In this paper, we proposed a novel approach advancing prior ap-
proaches (Pinciroli et al., 2005; Fiala and Basu, 2002) to reconstruct
horizontal lines in 3D space from a single 2D omni-directional im-
age, captured with a non-SVP catadioptric camera. Our method
reconstructs a 3D horizontal line using only two points extracted
from that line from a single image, rather than four points that
were needed in prior works. Preliminary experiments and simula-
tions validate the correctness of the proposed method which is
simpler than previous approaches while being more robust to er-
rors in feature point extraction.

Although our approach shows improvement over previous
methods, we believe further enhancement can be obtained by
addressing issues like imaging noise, and quantization error. Fu-
ture studies will also focus on developing more robust image
acquisition platforms and appropriate calibration methods.
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